本文详细概述了将连续学习(CL)应用于单课的人类机器人互动(HRI)会议(AVG。31 +-10分钟)的案例研究,其中机器人的心理健康教练是积极的(n = 20)参与者的心理学(PP)练习。我们介绍了互动会议后与参与者进行的简短半结构访谈记录的数据的主题分析(TA)的结果,以及对统计结果的分析,证明了参与者的个性如何影响他们如何看待机器人的方式及其互动。
translated by 谷歌翻译
维持现实世界中的人类机器人相互作用需要机器人对人类行为特质敏感,并适应其感知和行为模型以满足这些个人偏好。对于情感机器人,这需要学习适应个人情感行为,以为每个人提供个性化的互动体验。持续学习(CL)已被证明可以在代理中实时适应,从而使他们能够通过逐步获得的数据学习,同时保留过去的知识。在这项工作中,我们提出了一个新颖的框架,用于使用基于CL的感知机制对个性化的人类机器人相互作用进行现实应用,以建模个性化的人类机器人相互作用。为了评估所提出的框架,我们使用三种相互作用行为的变体与20名参与者进行概念证明的用户研究:静态和脚本化,使用基于情感的适应性而无需个性化,并将基于情感的适应性与基于情感的适应持续个性化。我们的结果表明,参与者对基于CL的持续个性化的明显偏好,在机器人的拟人化,动画和可爱性等级以及相互作用中观察到的显着改善,以及与机器人在机器人中的评分显着更高的相互作用,因为机器人的评价明显更好。了解参与者的感受。
translated by 谷歌翻译
We study algorithms for detecting and including glass objects in an optimization-based Simultaneous Localization and Mapping (SLAM) algorithm in this work. When LiDAR data is the primary exteroceptive sensory input, glass objects are not correctly registered. This occurs as the incident light primarily passes through the glass objects or reflects away from the source, resulting in inaccurate range measurements for glass surfaces. Consequently, the localization and mapping performance is impacted, thereby rendering navigation in such environments unreliable. Optimization-based SLAM solutions, which are also referred to as Graph SLAM, are widely regarded as state of the art. In this paper, we utilize a simple and computationally inexpensive glass detection scheme for detecting glass objects and present the methodology to incorporate the identified objects into the occupancy grid maintained by such an algorithm (Google Cartographer). We develop both local (submap level) and global algorithms for achieving the objective mentioned above and compare the maps produced by our method with those produced by an existing algorithm that utilizes particle filter based SLAM.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
Reflections on glossy objects contain valuable and hidden information about the surrounding environment. By converting these objects into cameras, we can unlock exciting applications, including imaging beyond the camera's field-of-view and from seemingly impossible vantage points, e.g. from reflections on the human eye. However, this task is challenging because reflections depend jointly on object geometry, material properties, the 3D environment, and the observer viewing direction. Our approach converts glossy objects with unknown geometry into radiance-field cameras to image the world from the object's perspective. Our key insight is to convert the object surface into a virtual sensor that captures cast reflections as a 2D projection of the 5D environment radiance field visible to the object. We show that recovering the environment radiance fields enables depth and radiance estimation from the object to its surroundings in addition to beyond field-of-view novel-view synthesis, i.e. rendering of novel views that are only directly-visible to the glossy object present in the scene, but not the observer. Moreover, using the radiance field we can image around occluders caused by close-by objects in the scene. Our method is trained end-to-end on multi-view images of the object and jointly estimates object geometry, diffuse radiance, and the 5D environment radiance field.
translated by 谷歌翻译
Deep Reinforcement Learning (DRL) has the potential to be used for synthesizing feedback controllers (agents) for various complex systems with unknown dynamics. These systems are expected to satisfy diverse safety and liveness properties best captured using temporal logic. In RL, the reward function plays a crucial role in specifying the desired behaviour of these agents. However, the problem of designing the reward function for an RL agent to satisfy complex temporal logic specifications has received limited attention in the literature. To address this, we provide a systematic way of generating rewards in real-time by using the quantitative semantics of Signal Temporal Logic (STL), a widely used temporal logic to specify the behaviour of cyber-physical systems. We propose a new quantitative semantics for STL having several desirable properties, making it suitable for reward generation. We evaluate our STL-based reinforcement learning mechanism on several complex continuous control benchmarks and compare our STL semantics with those available in the literature in terms of their efficacy in synthesizing the controller agent. Experimental results establish our new semantics to be the most suitable for synthesizing feedback controllers for complex continuous dynamical systems through reinforcement learning.
translated by 谷歌翻译
Often questions provided to open-domain question answering systems are ambiguous. Traditional QA systems that provide a single answer are incapable of answering ambiguous questions since the question may be interpreted in several ways and may have multiple distinct answers. In this paper, we address multi-answer retrieval which entails retrieving passages that can capture majority of the diverse answers to the question. We propose a re-ranking based approach using Determinantal point processes utilizing BERT as kernels. Our method jointly considers query-passage relevance and passage-passage correlation to retrieve passages that are both query-relevant and diverse. Results demonstrate that our re-ranking technique outperforms state-of-the-art method on the AmbigQA dataset.
translated by 谷歌翻译
Finding an initial noise vector that produces an input image when fed into the diffusion process (known as inversion) is an important problem in denoising diffusion models (DDMs), with applications for real image editing. The state-of-the-art approach for real image editing with inversion uses denoising diffusion implicit models (DDIMs) to deterministically noise the image to the intermediate state along the path that the denoising would follow given the original conditioning. However, DDIM inversion for real images is unstable as it relies on local linearization assumptions, which result in the propagation of errors, leading to incorrect image reconstruction and loss of content. To alleviate these problems, we propose Exact Diffusion Inversion via Coupled Transformations (EDICT), an inversion method that draws inspiration from affine coupling layers. EDICT enables mathematically exact inversion of real and model-generated images by maintaining two coupled noise vectors which are used to invert each other in an alternating fashion. Using Stable Diffusion, a state-of-the-art latent diffusion model, we demonstrate that EDICT successfully reconstructs real images with high fidelity. On complex image datasets like MS-COCO, EDICT reconstruction significantly outperforms DDIM, improving the mean square error of reconstruction by a factor of two. Using noise vectors inverted from real images, EDICT enables a wide range of image edits--from local and global semantic edits to image stylization--while maintaining fidelity to the original image structure. EDICT requires no model training/finetuning, prompt tuning, or extra data and can be combined with any pretrained DDM. Code is available at https://github.com/salesforce/EDICT.
translated by 谷歌翻译
Pictionary, the popular sketch-based guessing game, provides an opportunity to analyze shared goal cooperative game play in restricted communication settings. However, some players occasionally draw atypical sketch content. While such content is occasionally relevant in the game context, it sometimes represents a rule violation and impairs the game experience. To address such situations in a timely and scalable manner, we introduce DrawMon, a novel distributed framework for automatic detection of atypical sketch content in concurrently occurring Pictionary game sessions. We build specialized online interfaces to collect game session data and annotate atypical sketch content, resulting in AtyPict, the first ever atypical sketch content dataset. We use AtyPict to train CanvasNet, a deep neural atypical content detection network. We utilize CanvasNet as a core component of DrawMon. Our analysis of post deployment game session data indicates DrawMon's effectiveness for scalable monitoring and atypical sketch content detection. Beyond Pictionary, our contributions also serve as a design guide for customized atypical content response systems involving shared and interactive whiteboards. Code and datasets are available at https://drawm0n.github.io.
translated by 谷歌翻译
In this paper, we present methods for two types of metacognitive tasks in an AI system: rapidly expanding a neural classification model to accommodate a new category of object, and recognizing when a novel object type is observed instead of misclassifying the observation as a known class. Our methods take numerical data drawn from an embodied simulation environment, which describes the motion and properties of objects when interacted with, and we demonstrate that this type of representation is important for the success of novel type detection. We present a suite of experiments in rapidly accommodating the introduction of new categories and concepts and in novel type detection, and an architecture to integrate the two in an interactive system.
translated by 谷歌翻译